3.12.46 \(\int \frac {(d+e x^2)^3 (a+b \arctan (c x))}{x^6} \, dx\) [1146]

3.12.46.1 Optimal result
3.12.46.2 Mathematica [A] (verified)
3.12.46.3 Rubi [A] (verified)
3.12.46.4 Maple [A] (verified)
3.12.46.5 Fricas [A] (verification not implemented)
3.12.46.6 Sympy [A] (verification not implemented)
3.12.46.7 Maxima [A] (verification not implemented)
3.12.46.8 Giac [F]
3.12.46.9 Mupad [B] (verification not implemented)

3.12.46.1 Optimal result

Integrand size = 21, antiderivative size = 177 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=-\frac {b c d^3}{20 x^4}+\frac {b c d^2 \left (c^2 d-5 e\right )}{10 x^2}-\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))+\frac {1}{5} b c d \left (c^4 d^2-5 c^2 d e+15 e^2\right ) \log (x)-\frac {b \left (c^6 d^3-5 c^4 d^2 e+15 c^2 d e^2+5 e^3\right ) \log \left (1+c^2 x^2\right )}{10 c} \]

output
-1/20*b*c*d^3/x^4+1/10*b*c*d^2*(c^2*d-5*e)/x^2-1/5*d^3*(a+b*arctan(c*x))/x 
^5-d^2*e*(a+b*arctan(c*x))/x^3-3*d*e^2*(a+b*arctan(c*x))/x+e^3*x*(a+b*arct 
an(c*x))+1/5*b*c*d*(c^4*d^2-5*c^2*d*e+15*e^2)*ln(x)-1/10*b*(c^6*d^3-5*c^4* 
d^2*e+15*c^2*d*e^2+5*e^3)*ln(c^2*x^2+1)/c
 
3.12.46.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.04 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=\frac {1}{20} \left (-\frac {4 a d^3}{x^5}-\frac {b c d^3}{x^4}-\frac {20 a d^2 e}{x^3}+\frac {2 b c d^2 \left (c^2 d-5 e\right )}{x^2}-\frac {60 a d e^2}{x}+20 a e^3 x-\frac {4 b \left (d^3+5 d^2 e x^2+15 d e^2 x^4-5 e^3 x^6\right ) \arctan (c x)}{x^5}+4 b c d \left (c^4 d^2-5 c^2 d e+15 e^2\right ) \log (x)-\frac {2 b \left (c^6 d^3-5 c^4 d^2 e+15 c^2 d e^2+5 e^3\right ) \log \left (1+c^2 x^2\right )}{c}\right ) \]

input
Integrate[((d + e*x^2)^3*(a + b*ArcTan[c*x]))/x^6,x]
 
output
((-4*a*d^3)/x^5 - (b*c*d^3)/x^4 - (20*a*d^2*e)/x^3 + (2*b*c*d^2*(c^2*d - 5 
*e))/x^2 - (60*a*d*e^2)/x + 20*a*e^3*x - (4*b*(d^3 + 5*d^2*e*x^2 + 15*d*e^ 
2*x^4 - 5*e^3*x^6)*ArcTan[c*x])/x^5 + 4*b*c*d*(c^4*d^2 - 5*c^2*d*e + 15*e^ 
2)*Log[x] - (2*b*(c^6*d^3 - 5*c^4*d^2*e + 15*c^2*d*e^2 + 5*e^3)*Log[1 + c^ 
2*x^2])/c)/20
 
3.12.46.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {5511, 27, 2331, 2123, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx\)

\(\Big \downarrow \) 5511

\(\displaystyle -b c \int -\frac {-5 e^3 x^6+15 d e^2 x^4+5 d^2 e x^2+d^3}{5 x^5 \left (c^2 x^2+1\right )}dx-\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} b c \int \frac {-5 e^3 x^6+15 d e^2 x^4+5 d^2 e x^2+d^3}{x^5 \left (c^2 x^2+1\right )}dx-\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))\)

\(\Big \downarrow \) 2331

\(\displaystyle \frac {1}{10} b c \int \frac {-5 e^3 x^6+15 d e^2 x^4+5 d^2 e x^2+d^3}{x^6 \left (c^2 x^2+1\right )}dx^2-\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))\)

\(\Big \downarrow \) 2123

\(\displaystyle \frac {1}{10} b c \int \left (\frac {d^3}{x^6}-\frac {\left (c^2 d-5 e\right ) d^2}{x^4}+\frac {\left (d^2 c^4-5 d e c^2+15 e^2\right ) d}{x^2}+\frac {-d^3 c^6+5 d^2 e c^4-15 d e^2 c^2-5 e^3}{c^2 x^2+1}\right )dx^2-\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {d^3 (a+b \arctan (c x))}{5 x^5}-\frac {d^2 e (a+b \arctan (c x))}{x^3}-\frac {3 d e^2 (a+b \arctan (c x))}{x}+e^3 x (a+b \arctan (c x))+\frac {1}{10} b c \left (\frac {d^2 \left (c^2 d-5 e\right )}{x^2}+d \log \left (x^2\right ) \left (c^4 d^2-5 c^2 d e+15 e^2\right )-\frac {\left (c^6 d^3-5 c^4 d^2 e+15 c^2 d e^2+5 e^3\right ) \log \left (c^2 x^2+1\right )}{c^2}-\frac {d^3}{2 x^4}\right )\)

input
Int[((d + e*x^2)^3*(a + b*ArcTan[c*x]))/x^6,x]
 
output
-1/5*(d^3*(a + b*ArcTan[c*x]))/x^5 - (d^2*e*(a + b*ArcTan[c*x]))/x^3 - (3* 
d*e^2*(a + b*ArcTan[c*x]))/x + e^3*x*(a + b*ArcTan[c*x]) + (b*c*(-1/2*d^3/ 
x^4 + (d^2*(c^2*d - 5*e))/x^2 + d*(c^4*d^2 - 5*c^2*d*e + 15*e^2)*Log[x^2] 
- ((c^6*d^3 - 5*c^4*d^2*e + 15*c^2*d*e^2 + 5*e^3)*Log[1 + c^2*x^2])/c^2))/ 
10
 

3.12.46.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2123
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] 
:> Int[ExpandIntegrand[Px*(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c 
, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2])
 

rule 2331
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/2   S 
ubst[Int[x^((m - 1)/2)*SubstFor[x^2, Pq, x]*(a + b*x)^p, x], x, x^2], x] /; 
 FreeQ[{a, b, p}, x] && PolyQ[Pq, x^2] && IntegerQ[(m - 1)/2]
 

rule 5511
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x 
_)^2)^(q_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Sim 
p[(a + b*ArcTan[c*x])   u, x] - Simp[b*c   Int[SimplifyIntegrand[u/(1 + c^2 
*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] && 
  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] && 
!(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0] &&  !ILt 
Q[(m - 1)/2, 0]))
 
3.12.46.4 Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.18

method result size
derivativedivides \(c^{5} \left (\frac {a \left (c x \,e^{3}-\frac {c \,d^{3}}{5 x^{5}}-\frac {3 c d \,e^{2}}{x}-\frac {c \,d^{2} e}{x^{3}}\right )}{c^{6}}+\frac {b \left (\arctan \left (c x \right ) c x \,e^{3}-\frac {\arctan \left (c x \right ) c \,d^{3}}{5 x^{5}}-\frac {3 \arctan \left (c x \right ) c d \,e^{2}}{x}-\frac {\arctan \left (c x \right ) c \,d^{2} e}{x^{3}}-\frac {\left (c^{6} d^{3}-5 c^{4} d^{2} e +15 e^{2} d \,c^{2}+5 e^{3}\right ) \ln \left (c^{2} x^{2}+1\right )}{10}+\frac {c^{2} d^{2} \left (c^{2} d -5 e \right )}{10 x^{2}}-\frac {c^{2} d^{3}}{20 x^{4}}+\frac {d \,c^{2} \left (c^{4} d^{2}-5 c^{2} d e +15 e^{2}\right ) \ln \left (c x \right )}{5}\right )}{c^{6}}\right )\) \(208\)
default \(c^{5} \left (\frac {a \left (c x \,e^{3}-\frac {c \,d^{3}}{5 x^{5}}-\frac {3 c d \,e^{2}}{x}-\frac {c \,d^{2} e}{x^{3}}\right )}{c^{6}}+\frac {b \left (\arctan \left (c x \right ) c x \,e^{3}-\frac {\arctan \left (c x \right ) c \,d^{3}}{5 x^{5}}-\frac {3 \arctan \left (c x \right ) c d \,e^{2}}{x}-\frac {\arctan \left (c x \right ) c \,d^{2} e}{x^{3}}-\frac {\left (c^{6} d^{3}-5 c^{4} d^{2} e +15 e^{2} d \,c^{2}+5 e^{3}\right ) \ln \left (c^{2} x^{2}+1\right )}{10}+\frac {c^{2} d^{2} \left (c^{2} d -5 e \right )}{10 x^{2}}-\frac {c^{2} d^{3}}{20 x^{4}}+\frac {d \,c^{2} \left (c^{4} d^{2}-5 c^{2} d e +15 e^{2}\right ) \ln \left (c x \right )}{5}\right )}{c^{6}}\right )\) \(208\)
parts \(a \left (x \,e^{3}-\frac {3 e^{2} d}{x}-\frac {e \,d^{2}}{x^{3}}-\frac {d^{3}}{5 x^{5}}\right )+b \,c^{5} \left (\frac {\arctan \left (c x \right ) x \,e^{3}}{c^{5}}-\frac {3 \arctan \left (c x \right ) e^{2} d}{c^{5} x}-\frac {\arctan \left (c x \right ) d^{2} e}{c^{5} x^{3}}-\frac {\arctan \left (c x \right ) d^{3}}{5 c^{5} x^{5}}-\frac {-\frac {c^{2} d^{2} \left (c^{2} d -5 e \right )}{2 x^{2}}+\frac {c^{2} d^{3}}{4 x^{4}}-d \,c^{2} \left (c^{4} d^{2}-5 c^{2} d e +15 e^{2}\right ) \ln \left (c x \right )+\frac {\left (c^{6} d^{3}-5 c^{4} d^{2} e +15 e^{2} d \,c^{2}+5 e^{3}\right ) \ln \left (c^{2} x^{2}+1\right )}{2}}{5 c^{6}}\right )\) \(211\)
parallelrisch \(\frac {4 \ln \left (x \right ) b \,c^{6} d^{3} x^{5}-2 \ln \left (c^{2} x^{2}+1\right ) b \,c^{6} d^{3} x^{5}-2 b \,c^{6} d^{3} x^{5}-20 \ln \left (x \right ) b \,c^{4} d^{2} e \,x^{5}+10 \ln \left (c^{2} x^{2}+1\right ) b \,c^{4} d^{2} e \,x^{5}+10 b \,c^{4} d^{2} e \,x^{5}+60 \ln \left (x \right ) b \,c^{2} d \,e^{2} x^{5}-30 \ln \left (c^{2} x^{2}+1\right ) b \,c^{2} d \,e^{2} x^{5}+20 x^{6} \arctan \left (c x \right ) b c \,e^{3}+20 x^{6} e^{3} a c +2 b \,c^{4} d^{3} x^{3}-10 \ln \left (c^{2} x^{2}+1\right ) b \,e^{3} x^{5}-60 x^{4} \arctan \left (c x \right ) b c d \,e^{2}-60 a c d \,e^{2} x^{4}-10 b \,c^{2} d^{2} e \,x^{3}-20 x^{2} \arctan \left (c x \right ) b c \,d^{2} e -20 a c \,d^{2} e \,x^{2}-b \,c^{2} d^{3} x -4 \arctan \left (c x \right ) b c \,d^{3}-4 a c \,d^{3}}{20 c \,x^{5}}\) \(295\)
risch \(\frac {i b \left (-5 e^{3} x^{6}+15 x^{4} e^{2} d +5 e \,d^{2} x^{2}+d^{3}\right ) \ln \left (i c x +1\right )}{10 x^{5}}+\frac {4 \ln \left (x \right ) b \,c^{6} d^{3} x^{5}-2 \ln \left (c^{2} x^{2}+1\right ) b \,c^{6} d^{3} x^{5}-20 \ln \left (x \right ) b \,c^{4} d^{2} e \,x^{5}+10 \ln \left (c^{2} x^{2}+1\right ) b \,c^{4} d^{2} e \,x^{5}-30 i b c d \,e^{2} x^{4} \ln \left (-i c x +1\right )+60 \ln \left (x \right ) b \,c^{2} d \,e^{2} x^{5}-30 \ln \left (c^{2} x^{2}+1\right ) b \,c^{2} d \,e^{2} x^{5}-2 i b c \,d^{3} \ln \left (-i c x +1\right )+20 x^{6} e^{3} a c +2 b \,c^{4} d^{3} x^{3}-10 \ln \left (c^{2} x^{2}+1\right ) b \,e^{3} x^{5}+10 i b c \,e^{3} x^{6} \ln \left (-i c x +1\right )-60 a c d \,e^{2} x^{4}-10 b \,c^{2} d^{2} e \,x^{3}-10 i b c \,d^{2} e \,x^{2} \ln \left (-i c x +1\right )-20 a c \,d^{2} e \,x^{2}-b \,c^{2} d^{3} x -4 a c \,d^{3}}{20 c \,x^{5}}\) \(336\)

input
int((e*x^2+d)^3*(a+b*arctan(c*x))/x^6,x,method=_RETURNVERBOSE)
 
output
c^5*(a/c^6*(c*x*e^3-1/5*c*d^3/x^5-3*c*d*e^2/x-c*d^2*e/x^3)+b/c^6*(arctan(c 
*x)*c*x*e^3-1/5*arctan(c*x)*c*d^3/x^5-3*arctan(c*x)*c*d*e^2/x-arctan(c*x)* 
c*d^2*e/x^3-1/10*(c^6*d^3-5*c^4*d^2*e+15*c^2*d*e^2+5*e^3)*ln(c^2*x^2+1)+1/ 
10*c^2*d^2*(c^2*d-5*e)/x^2-1/20*c^2*d^3/x^4+1/5*d*c^2*(c^4*d^2-5*c^2*d*e+1 
5*e^2)*ln(c*x)))
 
3.12.46.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.21 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=\frac {20 \, a c e^{3} x^{6} - 60 \, a c d e^{2} x^{4} - b c^{2} d^{3} x - 20 \, a c d^{2} e x^{2} - 2 \, {\left (b c^{6} d^{3} - 5 \, b c^{4} d^{2} e + 15 \, b c^{2} d e^{2} + 5 \, b e^{3}\right )} x^{5} \log \left (c^{2} x^{2} + 1\right ) + 4 \, {\left (b c^{6} d^{3} - 5 \, b c^{4} d^{2} e + 15 \, b c^{2} d e^{2}\right )} x^{5} \log \left (x\right ) - 4 \, a c d^{3} + 2 \, {\left (b c^{4} d^{3} - 5 \, b c^{2} d^{2} e\right )} x^{3} + 4 \, {\left (5 \, b c e^{3} x^{6} - 15 \, b c d e^{2} x^{4} - 5 \, b c d^{2} e x^{2} - b c d^{3}\right )} \arctan \left (c x\right )}{20 \, c x^{5}} \]

input
integrate((e*x^2+d)^3*(a+b*arctan(c*x))/x^6,x, algorithm="fricas")
 
output
1/20*(20*a*c*e^3*x^6 - 60*a*c*d*e^2*x^4 - b*c^2*d^3*x - 20*a*c*d^2*e*x^2 - 
 2*(b*c^6*d^3 - 5*b*c^4*d^2*e + 15*b*c^2*d*e^2 + 5*b*e^3)*x^5*log(c^2*x^2 
+ 1) + 4*(b*c^6*d^3 - 5*b*c^4*d^2*e + 15*b*c^2*d*e^2)*x^5*log(x) - 4*a*c*d 
^3 + 2*(b*c^4*d^3 - 5*b*c^2*d^2*e)*x^3 + 4*(5*b*c*e^3*x^6 - 15*b*c*d*e^2*x 
^4 - 5*b*c*d^2*e*x^2 - b*c*d^3)*arctan(c*x))/(c*x^5)
 
3.12.46.6 Sympy [A] (verification not implemented)

Time = 0.59 (sec) , antiderivative size = 289, normalized size of antiderivative = 1.63 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=\begin {cases} - \frac {a d^{3}}{5 x^{5}} - \frac {a d^{2} e}{x^{3}} - \frac {3 a d e^{2}}{x} + a e^{3} x + \frac {b c^{5} d^{3} \log {\left (x \right )}}{5} - \frac {b c^{5} d^{3} \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{10} + \frac {b c^{3} d^{3}}{10 x^{2}} - b c^{3} d^{2} e \log {\left (x \right )} + \frac {b c^{3} d^{2} e \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{2} - \frac {b c d^{3}}{20 x^{4}} - \frac {b c d^{2} e}{2 x^{2}} + 3 b c d e^{2} \log {\left (x \right )} - \frac {3 b c d e^{2} \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{2} - \frac {b d^{3} \operatorname {atan}{\left (c x \right )}}{5 x^{5}} - \frac {b d^{2} e \operatorname {atan}{\left (c x \right )}}{x^{3}} - \frac {3 b d e^{2} \operatorname {atan}{\left (c x \right )}}{x} + b e^{3} x \operatorname {atan}{\left (c x \right )} - \frac {b e^{3} \log {\left (x^{2} + \frac {1}{c^{2}} \right )}}{2 c} & \text {for}\: c \neq 0 \\a \left (- \frac {d^{3}}{5 x^{5}} - \frac {d^{2} e}{x^{3}} - \frac {3 d e^{2}}{x} + e^{3} x\right ) & \text {otherwise} \end {cases} \]

input
integrate((e*x**2+d)**3*(a+b*atan(c*x))/x**6,x)
 
output
Piecewise((-a*d**3/(5*x**5) - a*d**2*e/x**3 - 3*a*d*e**2/x + a*e**3*x + b* 
c**5*d**3*log(x)/5 - b*c**5*d**3*log(x**2 + c**(-2))/10 + b*c**3*d**3/(10* 
x**2) - b*c**3*d**2*e*log(x) + b*c**3*d**2*e*log(x**2 + c**(-2))/2 - b*c*d 
**3/(20*x**4) - b*c*d**2*e/(2*x**2) + 3*b*c*d*e**2*log(x) - 3*b*c*d*e**2*l 
og(x**2 + c**(-2))/2 - b*d**3*atan(c*x)/(5*x**5) - b*d**2*e*atan(c*x)/x**3 
 - 3*b*d*e**2*atan(c*x)/x + b*e**3*x*atan(c*x) - b*e**3*log(x**2 + c**(-2) 
)/(2*c), Ne(c, 0)), (a*(-d**3/(5*x**5) - d**2*e/x**3 - 3*d*e**2/x + e**3*x 
), True))
 
3.12.46.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.18 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=-\frac {1}{20} \, {\left ({\left (2 \, c^{4} \log \left (c^{2} x^{2} + 1\right ) - 2 \, c^{4} \log \left (x^{2}\right ) - \frac {2 \, c^{2} x^{2} - 1}{x^{4}}\right )} c + \frac {4 \, \arctan \left (c x\right )}{x^{5}}\right )} b d^{3} + \frac {1}{2} \, {\left ({\left (c^{2} \log \left (c^{2} x^{2} + 1\right ) - c^{2} \log \left (x^{2}\right ) - \frac {1}{x^{2}}\right )} c - \frac {2 \, \arctan \left (c x\right )}{x^{3}}\right )} b d^{2} e - \frac {3}{2} \, {\left (c {\left (\log \left (c^{2} x^{2} + 1\right ) - \log \left (x^{2}\right )\right )} + \frac {2 \, \arctan \left (c x\right )}{x}\right )} b d e^{2} + a e^{3} x + \frac {{\left (2 \, c x \arctan \left (c x\right ) - \log \left (c^{2} x^{2} + 1\right )\right )} b e^{3}}{2 \, c} - \frac {3 \, a d e^{2}}{x} - \frac {a d^{2} e}{x^{3}} - \frac {a d^{3}}{5 \, x^{5}} \]

input
integrate((e*x^2+d)^3*(a+b*arctan(c*x))/x^6,x, algorithm="maxima")
 
output
-1/20*((2*c^4*log(c^2*x^2 + 1) - 2*c^4*log(x^2) - (2*c^2*x^2 - 1)/x^4)*c + 
 4*arctan(c*x)/x^5)*b*d^3 + 1/2*((c^2*log(c^2*x^2 + 1) - c^2*log(x^2) - 1/ 
x^2)*c - 2*arctan(c*x)/x^3)*b*d^2*e - 3/2*(c*(log(c^2*x^2 + 1) - log(x^2)) 
 + 2*arctan(c*x)/x)*b*d*e^2 + a*e^3*x + 1/2*(2*c*x*arctan(c*x) - log(c^2*x 
^2 + 1))*b*e^3/c - 3*a*d*e^2/x - a*d^2*e/x^3 - 1/5*a*d^3/x^5
 
3.12.46.8 Giac [F]

\[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{3} {\left (b \arctan \left (c x\right ) + a\right )}}{x^{6}} \,d x } \]

input
integrate((e*x^2+d)^3*(a+b*arctan(c*x))/x^6,x, algorithm="giac")
 
output
sage0*x
 
3.12.46.9 Mupad [B] (verification not implemented)

Time = 0.73 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.10 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \arctan (c x))}{x^6} \, dx=\ln \left (x\right )\,\left (\frac {b\,c^5\,d^3}{5}-b\,c^3\,d^2\,e+3\,b\,c\,d\,e^2\right )-\frac {a\,d^3-x^3\,\left (\frac {b\,c^3\,d^3}{2}-\frac {5\,b\,c\,d^2\,e}{2}\right )+\frac {b\,c\,d^3\,x}{4}+5\,a\,d^2\,e\,x^2+15\,a\,d\,e^2\,x^4}{5\,x^5}-\frac {\ln \left (c^2\,x^2+1\right )\,\left (b\,c^6\,d^3-5\,b\,c^4\,d^2\,e+15\,b\,c^2\,d\,e^2+5\,b\,e^3\right )}{10\,c}-\frac {\mathrm {atan}\left (c\,x\right )\,\left (\frac {b\,d^3}{5}+b\,d^2\,e\,x^2+3\,b\,d\,e^2\,x^4-b\,e^3\,x^6\right )}{x^5}+a\,e^3\,x \]

input
int(((a + b*atan(c*x))*(d + e*x^2)^3)/x^6,x)
 
output
log(x)*((b*c^5*d^3)/5 + 3*b*c*d*e^2 - b*c^3*d^2*e) - (a*d^3 - x^3*((b*c^3* 
d^3)/2 - (5*b*c*d^2*e)/2) + (b*c*d^3*x)/4 + 5*a*d^2*e*x^2 + 15*a*d*e^2*x^4 
)/(5*x^5) - (log(c^2*x^2 + 1)*(5*b*e^3 + b*c^6*d^3 + 15*b*c^2*d*e^2 - 5*b* 
c^4*d^2*e))/(10*c) - (atan(c*x)*((b*d^3)/5 - b*e^3*x^6 + b*d^2*e*x^2 + 3*b 
*d*e^2*x^4))/x^5 + a*e^3*x